\(\int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx\) [7]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 80 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=-\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\sqrt {b} B \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )-\frac {A b \text {arctanh}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 \sqrt {a}} \]

[Out]

-1/2*A*b*arctanh((b*x^2+a)^(1/2)/a^(1/2))/a^(1/2)+B*arctanh(x*b^(1/2)/(b*x^2+a)^(1/2))*b^(1/2)-1/2*(2*B*x+A)*(
b*x^2+a)^(1/2)/x^2

Rubi [A] (verified)

Time = 0.04 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.350, Rules used = {825, 858, 223, 212, 272, 65, 214} \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=-\frac {A b \text {arctanh}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 \sqrt {a}}-\frac {\sqrt {a+b x^2} (A+2 B x)}{2 x^2}+\sqrt {b} B \text {arctanh}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right ) \]

[In]

Int[((A + B*x)*Sqrt[a + b*x^2])/x^3,x]

[Out]

-1/2*((A + 2*B*x)*Sqrt[a + b*x^2])/x^2 + Sqrt[b]*B*ArcTanh[(Sqrt[b]*x)/Sqrt[a + b*x^2]] - (A*b*ArcTanh[Sqrt[a
+ b*x^2]/Sqrt[a]])/(2*Sqrt[a])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 825

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^
(m + 1))*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)))*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*
p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e^2) + 2*c*d*p*(e*f - d*g))*x), x] - Dist[p/(e^2*(m + 1)*(m + 2)*(c*d^
2 + a*e^2)), Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p +
 1) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[c*d^2 + a*e
^2, 0] && GtQ[p, 0] && LtQ[m, -2] && LtQ[m + 2*p, 0] &&  !ILtQ[m + 2*p + 3, 0]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}-\frac {\int \frac {-2 a A b-4 a b B x}{x \sqrt {a+b x^2}} \, dx}{4 a} \\ & = -\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\frac {1}{2} (A b) \int \frac {1}{x \sqrt {a+b x^2}} \, dx+(b B) \int \frac {1}{\sqrt {a+b x^2}} \, dx \\ & = -\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\frac {1}{4} (A b) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^2\right )+(b B) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x}{\sqrt {a+b x^2}}\right ) \\ & = -\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\sqrt {b} B \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )+\frac {1}{2} A \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^2}\right ) \\ & = -\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\sqrt {b} B \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a+b x^2}}\right )-\frac {A b \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )}{2 \sqrt {a}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.12 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=-\frac {(A+2 B x) \sqrt {a+b x^2}}{2 x^2}+\frac {A b \text {arctanh}\left (\frac {\sqrt {b} x-\sqrt {a+b x^2}}{\sqrt {a}}\right )}{\sqrt {a}}-\sqrt {b} B \log \left (-\sqrt {b} x+\sqrt {a+b x^2}\right ) \]

[In]

Integrate[((A + B*x)*Sqrt[a + b*x^2])/x^3,x]

[Out]

-1/2*((A + 2*B*x)*Sqrt[a + b*x^2])/x^2 + (A*b*ArcTanh[(Sqrt[b]*x - Sqrt[a + b*x^2])/Sqrt[a]])/Sqrt[a] - Sqrt[b
]*B*Log[-(Sqrt[b]*x) + Sqrt[a + b*x^2]]

Maple [A] (verified)

Time = 3.43 (sec) , antiderivative size = 73, normalized size of antiderivative = 0.91

method result size
risch \(-\frac {\left (2 B x +A \right ) \sqrt {b \,x^{2}+a}}{2 x^{2}}+\sqrt {b}\, B \ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )-\frac {b A \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right )}{2 \sqrt {a}}\) \(73\)
default \(B \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{a x}+\frac {2 b \left (\frac {x \sqrt {b \,x^{2}+a}}{2}+\frac {a \ln \left (x \sqrt {b}+\sqrt {b \,x^{2}+a}\right )}{2 \sqrt {b}}\right )}{a}\right )+A \left (-\frac {\left (b \,x^{2}+a \right )^{\frac {3}{2}}}{2 a \,x^{2}}+\frac {b \left (\sqrt {b \,x^{2}+a}-\sqrt {a}\, \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{2}+a}}{x}\right )\right )}{2 a}\right )\) \(127\)

[In]

int((B*x+A)*(b*x^2+a)^(1/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/2*(2*B*x+A)*(b*x^2+a)^(1/2)/x^2+b^(1/2)*B*ln(x*b^(1/2)+(b*x^2+a)^(1/2))-1/2*b*A/a^(1/2)*ln((2*a+2*a^(1/2)*(
b*x^2+a)^(1/2))/x)

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 377, normalized size of antiderivative = 4.71 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=\left [\frac {2 \, B a \sqrt {b} x^{2} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) + A \sqrt {a} b x^{2} \log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) - 2 \, {\left (2 \, B a x + A a\right )} \sqrt {b x^{2} + a}}{4 \, a x^{2}}, -\frac {4 \, B a \sqrt {-b} x^{2} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - A \sqrt {a} b x^{2} \log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, {\left (2 \, B a x + A a\right )} \sqrt {b x^{2} + a}}{4 \, a x^{2}}, \frac {A \sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + B a \sqrt {b} x^{2} \log \left (-2 \, b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {b} x - a\right ) - {\left (2 \, B a x + A a\right )} \sqrt {b x^{2} + a}}{2 \, a x^{2}}, -\frac {2 \, B a \sqrt {-b} x^{2} \arctan \left (\frac {\sqrt {-b} x}{\sqrt {b x^{2} + a}}\right ) - A \sqrt {-a} b x^{2} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + {\left (2 \, B a x + A a\right )} \sqrt {b x^{2} + a}}{2 \, a x^{2}}\right ] \]

[In]

integrate((B*x+A)*(b*x^2+a)^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/4*(2*B*a*sqrt(b)*x^2*log(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) + A*sqrt(a)*b*x^2*log(-(b*x^2 - 2*sqrt
(b*x^2 + a)*sqrt(a) + 2*a)/x^2) - 2*(2*B*a*x + A*a)*sqrt(b*x^2 + a))/(a*x^2), -1/4*(4*B*a*sqrt(-b)*x^2*arctan(
sqrt(-b)*x/sqrt(b*x^2 + a)) - A*sqrt(a)*b*x^2*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(2*B*a*x
 + A*a)*sqrt(b*x^2 + a))/(a*x^2), 1/2*(A*sqrt(-a)*b*x^2*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + B*a*sqrt(b)*x^2*log
(-2*b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(b)*x - a) - (2*B*a*x + A*a)*sqrt(b*x^2 + a))/(a*x^2), -1/2*(2*B*a*sqrt(-b)*
x^2*arctan(sqrt(-b)*x/sqrt(b*x^2 + a)) - A*sqrt(-a)*b*x^2*arctan(sqrt(-a)/sqrt(b*x^2 + a)) + (2*B*a*x + A*a)*s
qrt(b*x^2 + a))/(a*x^2)]

Sympy [A] (verification not implemented)

Time = 1.99 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.34 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=- \frac {A \sqrt {b} \sqrt {\frac {a}{b x^{2}} + 1}}{2 x} - \frac {A b \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x} \right )}}{2 \sqrt {a}} - \frac {B \sqrt {a}}{x \sqrt {1 + \frac {b x^{2}}{a}}} + B \sqrt {b} \operatorname {asinh}{\left (\frac {\sqrt {b} x}{\sqrt {a}} \right )} - \frac {B b x}{\sqrt {a} \sqrt {1 + \frac {b x^{2}}{a}}} \]

[In]

integrate((B*x+A)*(b*x**2+a)**(1/2)/x**3,x)

[Out]

-A*sqrt(b)*sqrt(a/(b*x**2) + 1)/(2*x) - A*b*asinh(sqrt(a)/(sqrt(b)*x))/(2*sqrt(a)) - B*sqrt(a)/(x*sqrt(1 + b*x
**2/a)) + B*sqrt(b)*asinh(sqrt(b)*x/sqrt(a)) - B*b*x/(sqrt(a)*sqrt(1 + b*x**2/a))

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.04 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=B \sqrt {b} \operatorname {arsinh}\left (\frac {b x}{\sqrt {a b}}\right ) - \frac {A b \operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right )}{2 \, \sqrt {a}} + \frac {\sqrt {b x^{2} + a} A b}{2 \, a} - \frac {\sqrt {b x^{2} + a} B}{x} - \frac {{\left (b x^{2} + a\right )}^{\frac {3}{2}} A}{2 \, a x^{2}} \]

[In]

integrate((B*x+A)*(b*x^2+a)^(1/2)/x^3,x, algorithm="maxima")

[Out]

B*sqrt(b)*arcsinh(b*x/sqrt(a*b)) - 1/2*A*b*arcsinh(a/(sqrt(a*b)*abs(x)))/sqrt(a) + 1/2*sqrt(b*x^2 + a)*A*b/a -
 sqrt(b*x^2 + a)*B/x - 1/2*(b*x^2 + a)^(3/2)*A/(a*x^2)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 163 vs. \(2 (62) = 124\).

Time = 0.31 (sec) , antiderivative size = 163, normalized size of antiderivative = 2.04 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=\frac {A b \arctan \left (-\frac {\sqrt {b} x - \sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - B \sqrt {b} \log \left ({\left | -\sqrt {b} x + \sqrt {b x^{2} + a} \right |}\right ) + \frac {{\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{3} A b + 2 \, {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} B a \sqrt {b} + {\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )} A a b - 2 \, B a^{2} \sqrt {b}}{{\left ({\left (\sqrt {b} x - \sqrt {b x^{2} + a}\right )}^{2} - a\right )}^{2}} \]

[In]

integrate((B*x+A)*(b*x^2+a)^(1/2)/x^3,x, algorithm="giac")

[Out]

A*b*arctan(-(sqrt(b)*x - sqrt(b*x^2 + a))/sqrt(-a))/sqrt(-a) - B*sqrt(b)*log(abs(-sqrt(b)*x + sqrt(b*x^2 + a))
) + ((sqrt(b)*x - sqrt(b*x^2 + a))^3*A*b + 2*(sqrt(b)*x - sqrt(b*x^2 + a))^2*B*a*sqrt(b) + (sqrt(b)*x - sqrt(b
*x^2 + a))*A*a*b - 2*B*a^2*sqrt(b))/((sqrt(b)*x - sqrt(b*x^2 + a))^2 - a)^2

Mupad [B] (verification not implemented)

Time = 6.45 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.18 \[ \int \frac {(A+B x) \sqrt {a+b x^2}}{x^3} \, dx=-\frac {A\,\sqrt {b\,x^2+a}}{2\,x^2}-\frac {B\,\sqrt {b\,x^2+a}}{x}-\frac {A\,b\,\mathrm {atanh}\left (\frac {\sqrt {b\,x^2+a}}{\sqrt {a}}\right )}{2\,\sqrt {a}}-\frac {B\,\sqrt {b}\,\mathrm {asin}\left (\frac {\sqrt {b}\,x\,1{}\mathrm {i}}{\sqrt {a}}\right )\,\sqrt {b\,x^2+a}\,1{}\mathrm {i}}{\sqrt {a}\,\sqrt {\frac {b\,x^2}{a}+1}} \]

[In]

int(((a + b*x^2)^(1/2)*(A + B*x))/x^3,x)

[Out]

- (A*(a + b*x^2)^(1/2))/(2*x^2) - (B*(a + b*x^2)^(1/2))/x - (A*b*atanh((a + b*x^2)^(1/2)/a^(1/2)))/(2*a^(1/2))
 - (B*b^(1/2)*asin((b^(1/2)*x*1i)/a^(1/2))*(a + b*x^2)^(1/2)*1i)/(a^(1/2)*((b*x^2)/a + 1)^(1/2))